

# The Role of Water Pricing in Water Conservation

**Sheila M. Olmstead**

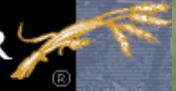
Prepared for the Texas Water Matters Conference:  
“From Policy to Reality: Advanced Urban Water Conservation in Texas”  
April 18, 2008



**Yale School of Forestry &  
Environmental Studies**

<http://www.environment.yale.edu>

# Ripped from the headlines...


## Star-Telegram

Regional message clear: conserve  
11/27/2007

## Express-News

Proposed drought restrictions on  
aquifer are harsher, 12/22/2007

## THE CHRISTIAN SCIENCE MONITOR



Thirsty Lawn Owners,  
Beware The Water Cops, 11/27/2007



## Texarkana Gazette

Treat water as money, because it is  
5/7/2007

## The New York Times

How to Stop Squandering Water?  
Raise its Price, 08/14/1999



Yale School of Forestry &  
Environmental Studies

# Scarce Resources and the Market

- In Texas and elsewhere, there are competing demands for water and a limited supply.
- During periods of scarcity, how should water resources be allocated?
- Other scarce resources are allocated by markets, in which prices transmit information about a good's scarcity, and other aspects of its value.
- But for many reasons, the development of unregulated water markets is neither likely nor desirable.



# Why Water is a “Special” Commodity

- Mobility
- Bulkiness
- Economies of scale
- Solvent properties (ability to assimilate wastes)
- Variability in supply
- Sequential use
- Complementarity
- Social and cultural values



# Public Aspects of Water Resource Management

- **Regulation**
  - Water pollution control
  - Legal apportionment of property rights
  - Water pricing
- **Public infrastructure investment**
  - Flood control
  - Navigation
  - Hydroelectric power
  - Irrigation
- **Public ownership and operation**
  - Municipal water treatment, distribution
  - Recreational areas



# Water Pricing Then and Now...

- “Nothing is more useful than water, but it will purchase scarce anything; scarce anything can be had in exchange for it.”
  - Adam Smith, *The Wealth of Nations*, 1776
- “Two hundred years later, I can refill an eight-ounce glass with tap water 2,500 times for less than the cost of a can of soda.”
  - Robert Stavins, *The New York Times*, 1999



# Water Demand and Prices

- On average, a 10% increase in the price of water reduces residential demand by 3 to 4% in U.S. cities (in the short run).
- The sensitivity of residential water demand to price increases is similar to that of residential electricity demand.
- On average, the response of water demand to price increases is stronger under higher prices.



# Water Demand and Non-price Conservation Policies

- Many non-price conservation policies do reduce water demand, though effectiveness varies.
- More stringent, mandatory policies (when well-enforced) tend to have stronger effects than voluntary policies and education.
- Water savings from policies that promote water-conserving fixtures may be smaller than expected, due to behavioral responses.



# Comparing Price and Non-price Conservation Policies

## ■ Cost effectiveness

- Price increases are more cost-effective than non-price approaches, because reductions occur among households with the lowest value for water use.
- Results of recent empirical work
  - 12 cities in the U.S. and Canada
  - Simulated replacing 2-day/week watering restrictions with drought pricing.
  - Both policies achieve same water “savings”, with welfare gains from the price approach of \$81/household per drought.



# Comparing Price and Non-price Conservation Policies, cont.

- Impact on utility net revenue
  - Non-price demand management policies increase total utility costs, and decrease total revenue (if demand reductions ensue).
  - At current estimates of price elasticity, utilities that increase water prices will increase total revenue.



# Comparing Price and Non-price Conservation Policies, cont.

## ■ Monitoring and enforcement

- Non-price policies require significant monitoring and enforcement to achieve full compliance.
  - In a study of 85 California utilities during the 1990s drought:
    - More than ½ of customers violated quantity-of-use restrictions
    - Compliance with type-of-use restrictions was also low.
- Non-compliance in the context of pricing requires that households consume water “off-meter”, much more difficult to achieve.



# Comparing Price and Non-price Conservation Policies, cont.

- Predictability in achieving conservation goals
  - A price elasticity estimate for a particular service area provides a good measure of expected effects of a price increase.
  - Statistical evaluation of water savings attributable to a non-price conservation policy provides a good measure of expected effects of a similar policy.
  - In the absence of statistical analysis, neither policy has an advantage over the other in terms of predictability.



# Comparing Price and Non-price Conservation Policies, cont.

## ■ Equity and distributional issues

- With price increases, low-income households tend to contribute a greater share of aggregate water demand reductions than they do under non-price policies.
- This does NOT mean that price-based approaches are regressive in *income*; progressive price-based approaches can be designed.
- The impact of non-price programs on distributional equity depends on how non-price programs are financed.



# Comparing Price and Non-price Conservation Policies, cont.

## ■ Political considerations

- Raising water prices (like the elimination of any subsidy) can be politically difficult.
- Does the prevalence of non-price conservation policies demonstrate:
  - Support for consumers for non-price approaches, even though they are more costly?
  - Misunderstanding of the full costs of non-price approaches?
  - Constraints faced by water suppliers in the ability to raise water prices?



# Common Misconception #1

- Water prices are low, thus price cannot be used to reduce demand.
  - The 300+ published estimates of the sensitivity of water demand to prices are based on 50 years of low water prices.
  - Water demand is “inelastic” (a 1% increase in price causes a <1% decrease in demand); NOT unresponsive to price.



# Common Misconception #2

- Water customers are unaware of prices, thus price cannot be used to reduce demand.
  - Consumers studied over the past 50 years act “as if” they are aware of water prices.
  - The 300+ published price elasticity estimates are based on consumers billed monthly, quarterly, and even less frequently.
  - Providing more information about prices and demand may boost the impact of price increases.



# Common Misconception #3

- Increasing-block pricing provides an incentive for water conservation
  - *High prices* provide an incentive for water conservation.
    - A study of 85 MA communities suggests that IBPs, *per se*, have no impact on demand, controlling for price levels.
    - If the only way to increase price is to increase the price on some fraction of consumption, this is better than nothing.



# Common Misconception #4

- Where water price increases are implemented, water demand will always fall.
  - Price elasticity estimates measure the reduction in demand for a 1% price increase, *all else held constant*.
  - Population growth, changes in weather or climate, income increases, etc. can increase demand.
  - If a price increase is followed by an increase in demand, these other factors are at work (and the price increase has reduced the rate of growth in demand).



# Implications of Inefficiently Low Water Prices

## ■ Short run

- Consumers use too much water – more than efficient amounts.
- Water conservation takes place only under “moral suasion or direct regulation.”

## ■ Long run

- Inefficient prices alter land-use patterns, industrial location decisions, household landscaping and appliance choices.



# A Recommendation

- When possible, apply benefit-cost analysis to water conservation policies.
  - Specific non-price conservation policies can only be compared to price increases if we have a measure of the benefits of non-price conservation policies.
    - Costs of non-price policies often calculated.
    - Costs and benefits of price increases often calculated.
    - Benefits of non-price policies are less well-understood.

